\(\int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx\) [726]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 321 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=-\frac {3 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a^2 \left (a^2-b^2\right )^2 d}-\frac {\left (7 a^2-b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{4 a \left (a^2-b^2\right )^2 d}+\frac {3 \left (5 a^4-2 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{4 a^2 (a-b)^2 (a+b)^3 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}+\frac {3 b^2 \left (3 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))} \]

[Out]

1/2*b^2*sec(d*x+c)^(3/2)*sin(d*x+c)/a/(a^2-b^2)/d/(b+a*sec(d*x+c))^2+3/4*b^2*(3*a^2-b^2)*sin(d*x+c)*sec(d*x+c)
^(1/2)/a^2/(a^2-b^2)^2/d/(b+a*sec(d*x+c))-3/4*b*(3*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*El
lipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/(a^2-b^2)^2/d-1/4*(7*a^2-b^2)*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1
/2)/a/(a^2-b^2)^2/d+3/4*(5*a^4-2*a^2*b^2+b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1
/2*d*x+1/2*c),2*b/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/(a-b)^2/(a+b)^3/d

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3317, 3930, 4183, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\frac {b^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)^2}+\frac {3 b^2 \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 a^2 d \left (a^2-b^2\right )^2 (a \sec (c+d x)+b)}-\frac {\left (7 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{4 a d \left (a^2-b^2\right )^2}-\frac {3 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^2 d \left (a^2-b^2\right )^2}+\frac {3 \left (5 a^4-2 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{4 a^2 d (a-b)^2 (a+b)^3} \]

[In]

Int[Sqrt[Sec[c + d*x]]/(a + b*Cos[c + d*x])^3,x]

[Out]

(-3*b*(3*a^2 - b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*a^2*(a^2 - b^2)^2*d) -
 ((7*a^2 - b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*a*(a^2 - b^2)^2*d) + (3*(5
*a^4 - 2*a^2*b^2 + b^4)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*a^
2*(a - b)^2*(a + b)^3*d) + (b^2*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*a*(a^2 - b^2)*d*(b + a*Sec[c + d*x])^2) +
(3*b^2*(3*a^2 - b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*a^2*(a^2 - b^2)^2*d*(b + a*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3930

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a^2)
*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist
[d^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b
*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] &&
 NeQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4183

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d)*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*
(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(a^2 - b^2)*(m + 1))), x] + Dist[d/(b*(a^2 - b^2)*
(m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A*b^2*(n - 1) - a*(b*B - a*C)*(n - 1)
 + b*(a*A - b*B + a*C)*(m + 1)*Csc[e + f*x] - (b*(A*b - a*B)*(m + n + 1) + C*(a^2*n + b^2*(m + 1)))*Csc[e + f*
x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(b+a \sec (c+d x))^3} \, dx \\ & = \frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {b^2}{2}-2 a b \sec (c+d x)+\frac {1}{2} \left (4 a^2-3 b^2\right ) \sec ^2(c+d x)\right )}{(b+a \sec (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )} \\ & = \frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}+\frac {3 b^2 \left (3 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}+\frac {\int \frac {-\frac {3}{4} b^2 \left (3 a^2-b^2\right )-a b \left (4 a^2-b^2\right ) \sec (c+d x)+\frac {1}{4} \left (8 a^4-5 a^2 b^2+3 b^4\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))} \, dx}{2 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}+\frac {3 b^2 \left (3 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}+\frac {\int \frac {-\frac {3}{4} b^3 \left (3 a^2-b^2\right )-\left (-\frac {3}{4} a b^2 \left (3 a^2-b^2\right )+a b^2 \left (4 a^2-b^2\right )\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2 b^2 \left (a^2-b^2\right )^2}+\frac {\left (3 \left (5 a^4-2 a^2 b^2+b^4\right )\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{b+a \sec (c+d x)} \, dx}{8 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}+\frac {3 b^2 \left (3 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}-\frac {\left (3 b \left (3 a^2-b^2\right )\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{8 a^2 \left (a^2-b^2\right )^2}-\frac {\left (7 a^2-b^2\right ) \int \sqrt {\sec (c+d x)} \, dx}{8 a \left (a^2-b^2\right )^2}+\frac {\left (3 \left (5 a^4-2 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{8 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {3 \left (5 a^4-2 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{4 a^2 (a-b)^2 (a+b)^3 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}+\frac {3 b^2 \left (3 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}-\frac {\left (3 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{8 a^2 \left (a^2-b^2\right )^2}-\frac {\left (\left (7 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{8 a \left (a^2-b^2\right )^2} \\ & = -\frac {3 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a^2 \left (a^2-b^2\right )^2 d}-\frac {\left (7 a^2-b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{4 a \left (a^2-b^2\right )^2 d}+\frac {3 \left (5 a^4-2 a^2 b^2+b^4\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{4 a^2 (a-b)^2 (a+b)^3 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}+\frac {3 b^2 \left (3 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.36 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.06 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\frac {\frac {4 a b^2 \left (11 a^3-5 a b^2+\left (9 a^2 b-3 b^3\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2}+\frac {4 \cos (c+d x) (a+b \cos (c+d x)) \cot (c+d x) (b+a \sec (c+d x)) \left (3 a b \left (3 a^2-b^2\right ) E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}+\left (8 a^4-9 a^3 b-5 a^2 b^2+3 a b^3+3 b^4\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}-3 \left (a b \left (3 a^2-b^2\right ) \tan ^2(c+d x)+\left (5 a^4-2 a^2 b^2+b^4\right ) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}\right )\right )}{(a-b)^2 (a+b)^2}}{16 a^3 d (a+b \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \]

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + b*Cos[c + d*x])^3,x]

[Out]

((4*a*b^2*(11*a^3 - 5*a*b^2 + (9*a^2*b - 3*b^3)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2 + (4*Cos[c + d*x]*(a
 + b*Cos[c + d*x])*Cot[c + d*x]*(b + a*Sec[c + d*x])*(3*a*b*(3*a^2 - b^2)*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]]
, -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] + (8*a^4 - 9*a^3*b - 5*a^2*b^2 + 3*a*b^3 + 3*b^4)*EllipticF[Arc
Sin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] - 3*(a*b*(3*a^2 - b^2)*Tan[c + d*x]^2 +
(5*a^4 - 2*a^2*b^2 + b^4)*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c +
d*x]^2])))/((a - b)^2*(a + b)^2))/(16*a^3*d*(a + b*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1175\) vs. \(2(373)=746\).

Time = 5.52 (sec) , antiderivative size = 1176, normalized size of antiderivative = 3.66

method result size
default \(\text {Expression too large to display}\) \(1176\)

[In]

int(sec(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^3,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)^2-3/2*b^2*(3*a^2-b^2)/a^2/(a^2-b^2)^2*
cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-7/4/(a+
b)/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2/(a+b)/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-
2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))*b+3/4/(a+b)/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-9/4*b/(a^2-b^2)^2*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3/4*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/
2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9/4
*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2
*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3/4*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x
+1/2*c),2^(1/2))-15/2*a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1
)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))
+3/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-3/2/a^2/(a^2-b^2)^2/
(-2*a*b+2*b^2)*b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+
1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \cos {\left (c + d x \right )}\right )^{3}}\, dx \]

[In]

integrate(sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**3,x)

[Out]

Integral(sqrt(sec(c + d*x))/(a + b*cos(c + d*x))**3, x)

Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^3, x)

Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

[In]

int((1/cos(c + d*x))^(1/2)/(a + b*cos(c + d*x))^3,x)

[Out]

int((1/cos(c + d*x))^(1/2)/(a + b*cos(c + d*x))^3, x)